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SYMBOLS

viscous  damping constant between m,
and m; ,

forcing function on m,

nonlinear spring force between mass and
foundation; kx + Bx*

. L .
nonlinear spring force bétween m: and
my; kyx: + ﬁzli

mean value of the modihed nonlinear

spring force for ¢ , < 1t < 1,
hinite time increment; Ae
spring constant between m, and m, ,

ith mass

wV] — a?

Se=Se 1 =F, 1 —2F.+ Fa,
Z.., -2,

Se—Se 1 =2Zu— 220+ Zn
independent time variable

scaled velocity i/w for one-degree-of-
freedom system

scaled velocity at ¢ = ¢, for one-degree-
of-freedom system

scaled velocity &i/on

scaled velocity at £ =1¢,

L

v,

(v:)n

Xn

X

(x)n

Yn

Y

(yt)n

scaled velooity y/o tor one-degree-of-
freedom system

scaled velocity at ¢t = t, tor one-degree-
of-freedom-system

scaled velocity yi/w;

scaled velocity at ¢ = ¢,

relative displacement between mass and
foundation for one-degree-of-freedom
system

relative displacement between mass and
foundation at ¢ = ¢, tor one-degree-of-

freedom system

relative displacement between m; and
m,-

relative displacement between m; and
mi_yatt =ty

absolute displacement of mass in one-
degree-of-freedom system

absolute displacement of mass at ¢ = ¢,
for one-degree-of-freedom system

absolute displacement of m;

absolute displacement of m, av ¢ = ¢,
absolute foundation displacement
cil2mw;

coefhicient of nonlinear term of spring
Bc/m.

delta term for the éth equation of motion
wh

k,/m,



A Numerical Method for the
Transient Response of Nonlinear Systems

G. ). O'HARA AND P. F. CUNNIFF

Structures Branch
Mechanics Diviston

Numerical integration equations are derved for determining the 1esponse of nonhnear systems
subjected 1o transient loads. The numetical method consists of approximating the nonlinear vaviables
and the forang functions i the diflerental equations over a short interval of tme by then mean
value, by a straight hne, or by a parabola. This allows for Dubamel integral t pe solutions tor the non-
linear terms. A step by step solution follows which uses an steraton method during cach imaement of
the solution. The suthaent condition for the comergence of the teranon method s presented tor the

case of N numencal equations. A scaling law 18 presented which ehnunates hinear damping from the
equation of maotion by g prescnbed tanstormation. Example problems o a one-degrec-ot-licedom
system and a two-degree-of-treedom system are sobved by the numencal integation equations and the
solutions are compared with 1esponse curves obtaned from analog computers at NRL

INTRODUCTION

This report deals primarily with approximate
numerical solutions of a single or a set of non-
autonomous second-order ordinary nonlinear dif-
ferential equations. While the dass of problems
under consideration lie in the field of structural
dynamics, the proposed solutions are applicable
to many other physics and engineering fields.
The mathematical tools of ordinary nonlinear dif-
ferential equations are particularly usetul when
dealing with autonomous solutions or with ap-
proximate steady-state solutions of these prob-
lems. However, they require considerable ingenu-
ity and insight to apply and are not suited for
the study of transient behavior, An attempt is
made in this report to present an casily under-
stood, yet powerful and predise, technique which
will allow most engincers to cope with the tran-
sient response of nonlincar systems,

Two previous NRL Reports (12) have dealt
with this problem, and this report pursues the
same general approach. Most approximate nu-
merical techniques fail o attack directly the non-
lincar differential equations in their solutions.
Rather, they inttoduce Maclaurin or Taylor series

expansions of the fundions as in the method of

Picard (3). The other general approach is o re-
place differential equations by equations of hanite

NRL. Problem RO5.248, Progeet WW 041 Thes i ab mterim report
on one phase of the problem, work s contimang
Manus nipt submatted Devember 11, 192

differences and to use these equations as an ap-
proximation to the differential equations. These
are good general purpose techniques. However,
they tend o be routine techniques which remove
the analyst from a clear understanding ot the
manner in which the differential equations were
solved.

The numerical method  presented uses only
those mathematical tools which are familiar 10
most engineering graduates and are applied di-
rectly to the class of differential equations under
study. It should not be construed that this is a
crude technique and that the solutions will be
greatly in error or will have inherent instabilities
of large magnitude. The examples in this report
show the opposite to be true.

To those readers who are already familiar with
Refs. 1 and 2, this reportis a direct application
of the principles explained thercin. For those
persons who hiave not read them, however, it is
noted that this report is completely self-contained
and these references are not required reading.

BACKGROUND THEORY
The Linear Problem

It will be benehicial to review a numerical inte-
gration method (D) which is used to solve lincar
single-degree-of-treedom  problems  before pro-
ceeding 10 the nonlinear ones. Consider the un-
damped lincar oscillator shown in Fig. 1 subject
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tig. 1 - Lanear oscillator
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F(t)

o an applied torce F(¢). Let y be the displace-
ment of the oscillator so that the differential
cquation of motion is

my + ky = F(¢) hH

where the dots denote differentiation with respect
to time. 1IF w? = k/m, Eq. (1) becomes
F(t)

. 2, F(8) .
y + wly ™ (2)

The general solution of this equation is
y=yty G

where y. is the complementary solution and y,
is the particular solution. This property of linear
equations will be shown to have some value in the
approximate solution of nonlincar equations.

For the case under study the complementary
solution is well known and the particular solu-
is a Duhamel integral (4). If v = y/w, the general
solution of Eq. (2) is

y = yo cos wt + ve Sin w!

t
+ ~l—f F(T) sin w(t —T) dT (4a)
mw J,

and its scaled derivative v is
v = —yo $iN wt + v (US Wt

t
+ _‘_L F(T) cos w(t = T) dT  (4b)
mw

where ye and ve are the initial values at ¢ = te = 0.
Usually the integrals of Fq. (4) cannot be eval-
vated for an arbitrary curve of F. If Fis divided

into equal segments of time,* and represented in
some approximate manner for each increment, a
step by step approximate solution follows. It is
noted that Eq. (4) is true for all times during the
response of the oscillator. For example, suppose
y =y, and v = p, at £ = t,. Now the time can be
redefined arbitrarily (o start at zero for the next
increment with y, and v, being the initial condi-
tions. The Duhamel integrals are solved for this
next step, y: and v; are found, and a repetition
of the process defines the next pair of points.
The process is self-perpetuating.

The problem in this direct attack upon the dif-
terential equation of motion has resolved itself
into the solution of these integrals for a short
tume increment. Since the forcing function may
be known only as a graphical function, as a dis-
continuous function, or as a complicated analytic
tunction, some methods of describing it over the
immediate range of integration is now discussed.

Approximate Methods of
Representing Functions

Three methods are presented for the approxi-
mate representation of a function over finite in-
crements of time At = A. Suppose a portion of an
arbitrary function F(t) is divided into equal seg-
memts of time.* Figure 2 shows the rectangular
step representation consisting of horizontal lines
drawn through the mean value of the function
over cach increment . Appendix A reviews two
common procedures for obtaining graphically the
mean value of a function for a given increment.
The equation of the function during each incre-
ment is

F(t) =F,=constant, tn < { < tas, (5)

where Fa is the mean value of F during the in-
crement.

The second method represents the curve by a
straight line through the cnd points across each
increment as shown in Fig. 3. The equation of the
function from £, 10 £y, is

F(:)=F.+S.'Z (6)

where Sa = Fayi — Fa, and time begins at ¢,.

*Divding F it equal segments of bme s an unnecessary but con-
vement restriction since it makes cako ulations eaver and computer pro-
gramming less cumbersome,
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Fig. 2 - Representation of a funcuon by rectangular steps Fig. 3 - Representation of a tunction by straight lines
The third method of approximating a function  F(¢) = F,
across an increment is to pass a parabola through —(K')*Fy o\ + [(h')2 — R2]Fs + BF.,
three successive points. For example, Fig. 3 shows + { — — = }l
X . hh'(h +h')
three successive points on the curve, namely,
Fa 1. Fo, and Fo.,. The equation of the parabola
from t. 10 1y, passing through these three points + [ll'f s 1 —(A+ A )Fs+ hF.. |]‘,- (10)
on the curve is hh'(h + &')

(4) = F LSk ¢ .

un-f,.+s.,h+2(ht h) (Ta)
or

TR | I WY (A

Fe) = Fat Sa g+ 25 (h, h) (7h)
where

S‘:Sn°l_5u:"noz_2ruol+Fl (a)

S: |:—'S.—S. I:Flul_

2F, +Fev (9

and time again begins at ¢,. Note that 82 is not the
square of §. Equation (7a) is used to represent the
curve during the first increment of time, that is,
for n = 0. Fquation (7b) is the expression used for
the 1emaining segments of the curve. Fquation
(7a) is derived specially to avoid the nonexistem
1erm in 8%y (that is, F ) if Eq. (7b) were used tor
the furst increment.

Fon the case where two successive increments are
not ecqual, say b between Fo o and F, and &'
between Fo and Fayy, Eq. (7b) is adjusted 1o read

Solution Equations for the
Undamped Linear Oscillator

If the parabolic representation of a function
given by Eq. (7b) is substituted for F in Eqs. (4),
and the integrations performed and evaluated at
t = h, there results

Yuet = Ya COs 8 + v, sin 0

Fa . _s_. _Sil’lo
+—k—(l—wsO)+k(l s e )
St [sin6® 2(1—cos @)
Tk | 7o o (1a)

Unet = —yq 8in @ + v, cos @

+£k!sin0+sfs—————ll _:”0

+

SL.(I+(‘()50 2 sin 0) (11b)

2% e T

where @ = wh. It is noted that for constant incre-
ments A, the trigonometric coefficients are cakeu-
lated just once for the entire solution.
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Equations (11) are used for the straight line
representation of F by setting §? equal to zero,
and for the rectangular step representation by
setting both S and S* equal to zero. The equa-
tions for the latter case are

Yns1 = yn COS 0 + v, sin 8

F,

+T(l-—cos )] (12a)

Uns1 = —Ya Sin @ + v, COs 6 +-—i—"sin 0. (12b)

Recall that F, is the mean value of the function
during each increment. For functions such as
F, which are explicit functions of time, it is recom-
mended to find the average value of F during the
time increment instead of employing the graphical
techniques outlined in Appendix A. The average
value of the function represented by a straight
line is

F. - ". + "'Ql
2

(13)

while the average value for a parabolic represen-

tation is
F.=

(-Fu—|+8f'.+5F.u)- (|4)

1
12
Either Eq. (13) or (14) is then substituted for Fa
in Egs. (12) and the numerical integral equations
solved in a step by step fashion.

Solution Equations for the
Viscously Damped Linear Oscillator

The methaod of solution for the undamped case
is also applicable (o the viscously damped sys-
tem. The equation of motion of an oscillator with
lincar damping is

my + cy + ky = F(1). (15)
Iif @ = ¢/2mw, Eq. (15) becomes
y 4+ 2awy + wly = !—'(’:—) (16)

where —® < a < o, and w > 0.

The form of the general solution for Eq. (16)
is given by Eq. (3) which, for this case, consists
of a combination of exponential, trigonometric,
and hyperbolic functions, and the solutions may
be found in Appendix B. The forcing function
is approximated as previously discussed and the
solution carried on precisely as in the undamped
case. For example, with @ = 1 and the average or
mean value of the force used, the equations are

Yas) = y.(l + 0)0" + 0.00“‘

F, (1= (1+06)e")

3

F

Une) = —y.Oe“ + v..(l - 0)0'. + —k! fe-*.

Comments

The solution of the linear problem leads to
several interesting observations.

1. A direct attack on the differential equation
is made.

2. The coefficients of the variable terms in the
numerical equations become constants through-
out the solution when equal time intervals are
employed.

3. The solution makes use of the natural expan-
sion functions for the differential equations. That
is, they are of the form of trigpnometric, hyper-
bolic, and exponential functions as they would be
in an analytical case.

NONLINEAR PROBLEM
Numerical Solution

Suppose an ordinary second-order differential
equation is reducible to the torm

y+H(,y,0)=0 (7

where H(y, ¥, t) may be a very complicated func-

tion. Since the function H contains a forcing func-
tion F, Eq. (17) becomes

;+6=£

(18)
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where

Let Eq. (18) be rewritten

. . ¥
+ 2awy + wly = —
y awy w'y m

—[C - 2awy — w?y]
and let
w8 = 6 — 2awy — W'y

so that

}5+2awj'+w’y=§'—w’8. (19a)

If 8 were zero for all time, the equation would
be linear, and the solution has already been pre-
sented. For convenience let the damping term
a be rero in Eq. (19a). Then,

. F
Yy + oly = — — w?b. (19h)
m
The solution of this equation is similar o Eqs.
(4); that is,

1
y = yo cOs 8 + vo sin 8 + ;};J': F(T)

'}
sin w(t — T)dT — wl 8(T) sin w(t — T)dT
(20a)

. 1 (..
v=—yosm0+vocuso+m£ F(D

'
s w(it—T)dT - w L 5(T) cos w(t — T)dT.
(20b)

The solution of the lincar problem for a given
arbitrary curve of F requires that F be partitioned
into finite increments of time and be approxi-
mated over each increment by one of several
representations. ‘The same approach, using the
same increment A, is proposed to handle the inte-
grals in Eqs. (20) containing the nonlinear terms
in .

For example, each term in 8 might be approxi-
mated by the parabolic representation so that

numerical integration equations for y and v are
obtained. Consider a simple oscillator with a cubic
hardening spring. The equation of motion is

my + ky + By* = F(¢)

or
. F(t)
2, =L))o
y + wly - )
where
=2
8 X y.

Use Eq. (7b) for the cubic term, obtaining

6":%[}""' (yuﬁl‘_YIl)%

L =2yt y...)(g_i)]’, @l

2 h* A

Expand Eq. (21), substitute it into Egs. (20) for
8. and integrate each term over the increment.
If the torcing function were also approximated
by the parabolic representation, the resulting
numerical integration equations are of the form
of Egs. (11) with the additional terms ya_y, ya.
and ya.y: that is,

Ynea =Sl(Fn 1y Fuy Fusn, Yn-ts Yus Yuets Va,h)
(22a)

Uns =K!(FnAI» F., Fuir, Yn-ts Yue Yust, v.,h).
(22b)

Everything is known on the right-hand side of
Eqs. (22) except yus 1. As a first trial this value may
be assumed equal to y, Substitute this into the
right-hand side of Eq. (22a) to find ya.:. Use this
value for ya.: in the right-hand side of Eq. (22a)
o find a second value of y,.1. Repeat this itera-
tion process until the succeeding values of y,.,
converge. Use the final value of yu., in Eq. (22b)
to find vass.

This method of solution could also be used if
instead of the parabolic representation the straight
line representation approximated the nonlinear
term. However, in either case a great deal of time
and cffort is required if the analyst uses a desk
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calculator. Of course, the numerical equations
could be programmed for an electronic computer.
Everything which follows from this point is di-
rected toward desk calculator computations.

The recommended method of solution with a
desk calculator is to use the mean value or average
value of the variables in the &term during a given
finite increment. If this assumption is also ex-
tended to the forcing function, Eqgs. (20) are inte-
grated to give

Yne1 = ¥u cOS 0 + vy sin 0

+ %(1 — cos 8) — 8a(1 — cus 8)  (28a)
Une1 = —ya siN 0 + vq cos 8

+ — sin 0 — §, 5sin 0.

F, .
p (23b)

For the ascillator with the cubic hardening spring,
the straight line averaging method yields

2
=L (ya t ya01)? (24)
while the parabolic averaging method yields
s
b= 1555 (=7n 1 + By + 5yai)3 (25)

Once again ya. i is the unknown on the right-
hand side of Egs. (23) and the iteration process
is used for cach step of the solution as previously
described.

The First Increment

Special treatment is necessary for the applica-
tion of the numerical integration equations at the
start of the solution. At the beginning of a problem
the initial conditions are always known so that
ye and ve are established. Having selected a time
increment A, the first step of the solution depends
upon the type of averaging method to be used for
the nonlinear terms. In the case of the straight
line averaging method, the first trial value for
y: might be assumed; y; might be set equal to
Yo, or a Maclaurin series might be used to approxi-
mate y,. In any event, the first trial value of y, is
substituted into the right-hand side of the nu-
merical integration equation to find a new value
of yi. The iteration procedure follows as previ-

ously mentioned. Of course, if 8 contains the
scaled velocity, the same approach is used to find
vy,

In the case of the parabolic averaging meth-
od, Eq. (25) shows the rear point y4-,, which must
be known before iterating to find ya.i. At the
start of a problem where n =0, y -, does not exist.
It is suggested that the straight line average be
used for the frst increment to establish y,. If
greater accuracy is desired, use the linear averag-
ing method for half an increment, that is, for
A/2. Having established y,/» in this manner, the
parabolic averaging method is now used for
another half increment to find y,. The full in-
crement might then be used from this point
throughout the remainder of the solution.

Graphical Form of Nonlinear Components

Quite frequently the nonlinear characteristic
of a material in a system is determined from lab-
oratory experiments and is plotted as force ver-
sus displacement or velocity. It is sometimes pos-
sible to find an analytical expression for such a
curve. In the event this is not readily attainable,
a graphical technique for finding the mean value
of a function over an increment is used (see Ap-
pendix A).

For purposes of illustration consider Fig. 4a,
which shows the spring force for positive dis-
placements only. A line tangent 1o the curve at
the origin is drawn and is labeled the &-line. Fig-
ure 4b represents the spring force minus the
k-line as a function of displacement. This is the
curve from which the mean value of f is deter-
mined. Suppose an oscillator contains such a
spring. Equations (23) become

Ynet = Yu COS 8 + v, sin 0

+£k! (1 —cos 8) —% (1 —cos 8) (26a)
Unst = —Yx Sin 8 + vy cos 8

+EB Gno-Line (26b)
k k

where F, is the mean value of the forcing function
and f, is the mean value of the curve shownin Fig.
4b. At step n, yu and va are known, F, is known
from the input curve, fu depends upon y, and the
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Fig. 4 - Spring force of a nonlinear spring. The k-line is tangent
to the curve at the origin.

unknown y..y. As a first trial for finding ya.:,
find f for y, and use this for f,. Substitute into
Eq. (26a) 10 find a first trial of yu,,. Now find
fa between y, and y,, 1 from Fig. 4b and substitute
this into Fq. (26a) 10 obtain a new value of ya, .
Repeat the process until succeeding values of
¥n+1 CONVETEC.

For certain curve shapes it might be advan-
tageous to draw two or more &-lines for certain
portions of a given curve. These A-lines would
provide a solution which follows more closely a

piecewise linear solution of the system by reduc-
ing the magnitude of the adjusted forces f. This
means that a corresponding number of differen-
tial equations must be written for each region of
the curve where a k-line is drawn. Proper initial
conditions and 's must be determined for each
numerical integration equation. An example
might be a material whose force-displacement
curve follows closely an ideal elastic-plastic re-
lationship.

Forcing Functions

Foundation motion of structures is an important
type of forcing function in the field of structural
dynamics. Such motion may be described as foun-
dation acceleration, velocity, or displacement. In
the case of foundation acceleration the differen-
tial equation of motion for a nonlinear oscillator
with a cubic hardening spring is

P+ olx=—7—yix? (27)

where x is the relative displacement between the
mass and the foundation and £ is the foundation
acceleration. This equation is similar to Eq. (2),
with x replacing y and —Z replacing F/m. The
parabolic averaging method is recommended for
systems with a known curve for Z This average
for # is the same as Eq. (14) provided the F terms
are replaced by Z terms. Equations (11) may be
also used provided the following changes are
made:

T i
S‘-|_ Sl.
k - = @l * In Xny Un = Un

When the foundation velocity is the prescribed
input, an 'imeresling relationship is found for
the parabolic average of z to be used in the nu-
merical solution of Eq. (27). Consider the para-
bolic representation for foundation velocity and
differentiate to find foundation acceleration:

s . L S‘If__i
z—z.+5.h+—2 (h’ h)

_Sa Sk, _ Sk,
P4

At ' T on
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The average acceleration during the increment is

“ni) T en

dl—h— A

This is the approximate representation for the
foundation acceleration according to the theorem
of the mean of differential calculus.

If the foundation displacement is the prescribed
input, the differential equation of motion for the
nonhnear oscillator should be of the form

o telyy=etz- 9y - z)? (28)
where y, is the absolute displacement of the mass.
F'he parabolic average representation for z is
found tor cach increment from the given curve.

Step Changes in Input

The numerical integration equations are par-
ticularly applicable 10 problems in which step
changes occur in the input of the system. The
only restriction in the solution is w0 require that
agiven increment terminate where the step change
occurs. Let the curve shown in Fig. 5 be a toun-
dation velocity of a nonlinear oscillator, and sup-
pose the increment A is selected for the solution,
After the fifth step of the solution, a new incre-
ment k' is used for the sixth increment in order
to arrive at the time when the step change in the
foundation velocity occurs. The size increment
h is then used throughout the remainder of the
solution.

s

~=lateh -

| 2 3 4 36 7 8 9 10

Fig. B - Step change in toundation vebocity

For the sixth increment of the numerical inte-
gral solution, & new increment 8° = wh' must
replce 8 = wh in the solution equations. Equa-
tion (10) must be used if the input is being ap-
proximated by the parabolic representation. In
so doing, the solution is found at step 6 for xg
and ug, where xq is the relative displacement be-
tween the mass of the oscillator and the founda-
ton and uy is the corresponding scaled relative
velocity. At this point the step change in foun-
dation velocity (scaled) must be added 0 ug 10
give ug. With x4 and uy’ as the initial conditions
for step 7 of the solution, and using 6 in the solu-
tion equations, the input curve should be repre-
sented by the straight line method between points
6 and 7 instead of the parabolic method due to the
discontinuity at point 6. This completes the solu-
tion to step 7. The parabolic representation may
be used from this point 10 the end of the input
curve.

CONVERGENCE OF THE
ITERATION METHOD

One may wonder if an assumed variable could
not produce a diverging solution when substi-
tuted into the 8 term on the right-hand side of
the numerical equations for a given increment.
Scarborough (3b) has discussed the sufficient
conditions for convergence of one and two nu-
merical equations when the iteration process is
applicd. An extension of the procedure follows
for a set of N numerical equations.

Consider the set of equations

e, =Biler, €2, ...,en],i=1,2,...,N (29
where B, is a set of known functions in terms of
the €'s. The set of equations is satisfied by the
exact values of the set of roots €. As a first ap-

proximation to find a set of routs, try € . Hence,
Eq. (29) gives
e"=B[e", &, ..., ). (30)

Substract Eq. (30) from (29) and apply the theorem
of the mean value for a function of N variables.
This gives

N
«-e'=3 (¢ By 31
i
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where
B, =

68.[“10) + ¢le, — ‘(lm)

L€+ pley — )]
dE,

O0=s¢=<l.

Add each equation of the set of equations as ex-
pressed in Eq. (31) and consider only the absolute
values. Thus,

h)
Sle, -l < 2 T le—ellB,l. 32
]

[l =) j=1

Let the maximum value of the terms {|B,,,} + ...
+ {Bval). oo {IBial + ...+ |Byal) be a proper
traction ¢ for all points in the region (€, ¢,).

Then Eq. (32) becomes

2 |¢ _etlbl < w 2 l‘ —G“"I

[ ]

(33)

‘This relation holds for the first approximation.
For succeeding approximations, similar relations
are obtained. That is,

2 lf _¢m| <y 2 le, — €]

N
T le—e <93 fe—e M 39
i=1 =1

Muhiply together all these inequalities as ex-
pressed in Eqgs. (33) and (34) and divide through
by the common factors

2!:—..4 zlg,—g 2"—6“ n|

so that,

N N
Yl - <o Y le,— €. (35
-1 i=1

Since ¥ is a proper function, the right-hand
member of this inequality may be taken as small

as desired by repeating the iteration process a
suthcient number of times. ‘This means that the
errors €, — €| can be made as small as desired.
‘Fherefore, the iteration process converges when
the N conditions

IB]JI + IBZJI + ...+ IB'\'-II <]

|Bin] + 1Ben| + ...+ |Byal <1 (36)
are satisfied for all points in the neighborhood of
o,

Consider Eqgs. (23), which pertain to an incre-
ment of time A for a single-degree-of-freedom
system. All terms on the right-hand side of the
equations are constants except 8s. Suppose a
is a function of displacement y and scaled ve-
locity u. FEquations (23) are of the form of Eq.
(29) where

€1 = Ynoiy € = Un+t
By =yacos 8+ vasin @
F.
+T (1-cos @) — &(l—cos@)

B:=-~yssin 0+ v,cos 8

+I.T-sm0—-8,.smo

According to Eq. (36) the iteration process on the
8's converge in the ath step of the solution pro-
vided that

_ . 3 Bn

I(I cos 9) —— By..l |sm an.” < ]

‘(l—msO)—-a-'— sin 0 95, <1
'met Ovns

in the neighborhood of [y, v'%,].

A SCALING LAW

Consider the equation of motion tor a single-
degree-of-freedom system:

¥y + 2awy + wly = —w!8 37
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Input and numendal solution of 4 nonlinear single-degree-of-freedom

sstem with viscous damping

where 8 = 8(y, ¥, t). Substitute the transformation

y= A( awl (33)
into Fq. (37). This gives
A+ piAd = —w?Ae™ 39

where p? = w*(1 —a?) and A = A(4, 4, 1).

Equation (39) can be solved graphically (2) or
numerically and, using the transformation of
Eq. (38), the response of the original system is
found. For the case where the mean or average
value of the terms in the & expression are used,
the numerical integration cquations for Eq. (39)
JGare

Anii = An cos ph +54;' sin ph
— K" eavtinttns1Vit (1 — cos ph) (40a)
i;—;—' = —Ay sin ph + % cos ph
— A, entlns12 gip ph. (40b)

EXAMPLES
Example 1

Figure 6a shows the single-degrec-of-freedom
system subjected 10 a transient foundation velocity
shown in Fig. 6b. The equation of motion is
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X +2awt + wir = —w?, a<]l

where 8 = Bx%k + Zlw? Since a desk calculator
is used 10 find the response x of the system, the
mean value of the terms in the 8 expression is
used. For this case a < 1, so that the equations
trom Appendix B for Case 11 apply. By replacing
Fim by —w?8 in Eq. (B1), the numerical integra-
tion equations are

Xne1 = Xy €700 (ms ph + % sin ph)

e ot

+ uan - sin ph

— 8 [1 —e 2 (cos ph + % sin ph)] (41a)

e-aO

Unst = —Xgq sin ph

sin ph.
(41b)

+ uy e-2* (cos ph — gr sin ph) ~ & cr

The values of the parameters are

m = 0.10 lb-sec?/in. ¢ = 2.4 Ib-sec/in.

k = 1440 Ib/in. B =720 lb/in3

A time increment A = 0.0028 sec is selected so
that 8 = 360 wh/2n = 19.25 degrees. Referring
to Fig. 6b it is noted that twelve steps of this in-
crement arrive at ¢ = 0.0336 sec and that the thir-
teenth step requires an A’ = 0,0014 sec to com-
plete the input of the system. The solution of
the free vibrations from this point is based upon
h = 0.0028 sec.

Since the foundation velocity is the known in-
put, while the 8 expression calls for the founda-
tion acceleration, the latter is approximated over
cach short increment by the parabolic average
method. That is,

ve = i.¢| - i-
2n h .

The parabolic averaging method is used for the

£ term in the § expression. Upon substituting

the vilues of the parameters into Eqgs. (41) for
h = 0.0028 sec, there results

e = 0.945311 xa + 0.318880 Un

— 0.054689 5, (dla")

uney = —0.318880 x, + 0.881534 u.,

= 0.318880 5, (41b’)

where

éuol - in

40.320
+ 0.000289 (—xn-1 + 8 xp + 5 x5.,)3.(41c")

&:

The straight line averaging method is used
for the first increment of the solution since x_,
does not exist. Table 1 shows the arrangement
for solving the equations and presents the data
for n = 0, 1, and 2. Although all numbers are
carried to six decimal places, the iteration of the
variable x was carried to four decimal places.
This generally required four trials in each step.
The results of the numerical method are plotted
in comparison with the response curve obtained
from an analog computer at NRL as shown in
Fig. 6¢.

Example 2

Figure 7a shows a two-degree-of-freedom sys-
tem subjected 10 a transient foundation accelera-
tion shown in Fig. 7b. There are two cubic harden-
ing springs in the system with the following
force-displacement relationships:

Sfie = kixy + Buat, Sar = kaxa + Baxd.

The equations of motion are

X+ 2aiwi,y + wir, = —wi}d, (42a)
%2 + 2a2w2d2 + wix: = —wib; (42b)
where
B ,_c2. ki B, I
8, P Bl X2 Inx’+m¥
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The numerical integration equations for Egs.
(42) are the same as in Example 1 with the addi-
tional requirement that the proper subscripts be
used. The values of the parameters are

m, = 0.40 lb-sec?/in. m: = 0.10 Ib-sed?/in.

ky = BOOO Ib/in. ke, = 2500 lb/in.
B = 7000 lb/in2 B: = 2000 Ib/in.?
e = 12 Ib-sed/in. c: = 3 Ib-sec/ind

A time increment b = 0.002 sec is selected so
that 8, = 360 w,h/27 = 16.2] degrees and 8 =
360 w:h/2w = 18.12 degrees. The parabolic av-
eraging method is used for the variables in the
8 expressions (indluding the input, Fig. 7b). Upon
substituting the values of the parameters into
the numerical integration equations, there results

(x)n = 0.961066 (x;), + 0.270884 (uy).

~0.038934 (&)

(uy)por = —0.270884 (x,), + 0.903603 (u,).
— 0.27088% (&) n
where

(&)= 0.875000 1} - 0.059293 4. ~ 0.312500 x:

b4
— y 2t 50000
0.250000 x + 55560

and
(x2)ne1 - 0.951391 (x:)a t 0.301839 (u:).
— 0.048609 ( 5:).
(Uz)wor = —0.301839 (x:)0 + 0.894121 (u2),
- 0.301839 (5:)a

where

i

(8200 = 0.250000 1, + 3 + 0.047434 .

- 0.169706 a, — 0.800000 v, — 0.700000 .

The bars above the variables in the 8 expres-
sions represent parabolic average values during
the imarement o 1w n + 1 The convergence of
the variables of the iteration method was carried
1o four dedmal places. This generally required
five wials in cach step. The numerical vesults
are plotted against the response curves obtained
from an analog computer at NRL and are shown
in Figs. 7¢ and 7d.

CONCLUSIONS

A numerical integration method has been pre-
sented which is casily understood and provides
a good solution for the transient response of non-
lincar systems. Generally the smaller the increment
selected for h, the greater the accuracy obtained
in the response solution. Experience has shown
that angular increments 8 = 360 wh/2m between
15 and 30 degrees for single-degree-of-freedom
svstems are generally acceptable while for two-
degrec-of-freedom systems 8's should range be-
tween 10 and 20 degrees. The two examples in
this report used these ranges of values for
and the reader can see the difference between the
analog  computer response and the numerical
1esults,

While the examples used herein are mechanical
models  of structures  subjected  to foundation
mation, the numerical method is applicable for
tinding the transient vesponse of a set of non-
lincar nonautonomous differential equations for
other types of physical systems.
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APPENDIX A
MEAN VALUE DETERMINATION OF A FUNCTION

There are two common graphical methods for
finding the mean value of the function shown
in Fig. Al tor the increment At = h. The first
method is o draw a line in an arbitrary direc-
tion by eye such that the sum of the enclosed areas
between the curve and the straight line is sero.
The mean value of the function is the distance
from the abscissa axis to the straight line at the
middle of the interval. For example, line cd in
Fig. Al is such a line and the point £ on the line
determines the mean value F.

The second method consists of drawing the line
ab which connects the end points of the curve
segment. At the middle of the segment measure
the distance between the curve and the line, that
is, eg. Measure off 2/3 of this distance above (or
below) point g to establish the mean value at point
/- This second method is accurate if the curve is
any part of a quadratic parabola.

Fig.Al - Determination of the mean value of a function F(¢)
tor the increment A

APPENDIX B
NUMERICAL INTEGRATION EQUATIONS
FOR LINEARLY DAMPED SYSTEMS

Numerical integration equations are presented
tor the differential equation

3w

¥ + 2awy + wly = (B1)

where ~» < a < =, w > 0. The region of a is
broken into seven cases as follows:

Case I: a=0

Case 1I: 0<ac<l
Case H1: a=1

Case 1V: a>1

Case V: -1 <a<0
Case VI: a=-—I|
Case VII: a < -1

The applied force is represented by the para-
bolic method, so that

- £ Skt
F=Fu+Syp+23 (h, h).

For foundation motion Eq. (B1) becomes

T+ 2awt + wtax=—12. (B2)
By means of similarity between Eqs. (Bl) and
(B2), it is only necessary to change the follow-
ing in the numerical integration equations for
applied forces to obtain those for foundation
motion. Let

Yn = Xny, Un= Un, F.——-mz..
Fa_ _%n Sa__Sa Sh.__Sk.
k %k o'k *

If the input is given by the foundation velocity,
which is represented by the parabolic method,
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the derivative of ¢ gives the foundation accelera-
tion as

where
S, = Zney — Zn
Se 1= Zney —22nt 24 4.

Equations (Bl) and (B2) are solved tor cach of
the seven cases.

CASE I: a=0

Input - Applied Force
or Foundation Acceleration

Ynet = ¥n 0S 0 + v, Sin 0+% (1 —cos 8)

Sa sin 8 Stasin@ 2(1 —cos @
+/.-(' o)+2k[o o ]
Unet = —ya SIN O + 1y cOs 0

Fa . Safl-cos 8
+ksmo+k(-—-———-0 )

+SI ! (I +os 8 2sin 0)
2k 0 62 '

Input - Foundation Velocity

Xme1 = Xn €08 0 + uy sin 0 _S (]_-_M)
w 6

_Si 1 (l +cos 6 sin 0)
w 20 02

S.sin @

Umet = —Xp SIND O+ upy cos @ —
wb

. st , (l —cos @ sin 0)
w 0 20 /°

CASEII: 0 < a < | (Let r = V1 — a?

Input - Applied Force or
Foundation Acceleration

Ynir =yne 8 (ms ré +% sin rB)

o SN 1O
r

+ vy, e

+ L [I — g0 (('us o+ < sin rﬂ)]
k r

& _2_" —_p-al .
+ 3 [I 9 (1l —e cos r@)

Y — 921 ._ae SiD 1O
(1 —2a?) e —rO]

S3 .{_gg_[z(l—4a=)_gg
2k |0 o 6

(1 — e 2 cos ré)

1 —2a  2a(3 — 4a?)
+[ e ]

a0 SID ro}
r

Py 1 =—y,€ "'M+ Une °‘(('us ro—grsill rO)

+ F. o a0 NN r@

k r
+§ (I —e s rd  ae °sin r0)

k (/] ré

Shoaf2 (:‘_a )(Lﬂﬁ
USTR YR 0 )

_ [2(! = 2a?) g] e sin r@
o 0 r :

Input - Foundstion Velocity

a . si
Xner =xne "'((‘os r0+7 sin rO) +upe = sin 1o

S (l —ecosr@ ae *sinr@
0 ré

- (e

a (1 —-2a?)] e sinro
*[ ] ] e }

2
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., sinr@ a .
Une ) =—Xp€ "‘——r— + un e""(ms r0——r- sin rO)

Sa o-at sin r@

_Sia [l — e 9 cos rf

w ro ® 6?
a  1\e *sin rd
(o + 2) pr ]

CASE III: a = 1

Input - Applied Force or
Foundation Acceleration

Yned =y.(l +0) e"+v.0 e ?
+%[1—(1+o)e-']
+%[(I +e")—%(l—e")]

St..[6

+ —

2% |o (1 —e*) -% (1 —~2e%) —e"]

Unet = ~yale ® + va(l —8)e * + EI:! Oe-?

Safl—e* _,
+k( . c)

SAaf1_4 ,__., ..( 2)]
+2* [0 0’“ e’ +e l+0 .

Input - Foundation Velocity

Xno1 = xa(l +0)e ?+ un.0e?

B
-G
o)

()]

CASEIV:a > 1 (Letq = Va* — 1)

Input - Applied Force or
Foundation Acceleration

Ynor = yn e ((‘osh q6 +$ sinh q0)

4 p, e-a® sinh ¢6
! q

+ tk—" [l — e °® (msh q0 +Z sinh qO)]
q
§.ﬂ _2_(! — p-ald .
+ % [l 7] (1 = e cosh ¢8)
- _2,,2)(—«0M]
qb
Si |[_§_g_[2(l—4a’)_2g
2k 8 o [/}
(1 — e-2? cosh ¢0)
— 24? — 4at
+[l 92a +2a(3 4a )]

[

o-at sinh 10]
q

fner = —yn o-99 sinh ¢6
q

+ vy e (u)sh q0 —% sinh qO)

+ F, o at sinh ¢80
k q

S

+ 3 (l — ¢ % cosh g8 _ ae~** sinh qO)
k 0 q0
S (2 4a\ {1 — e cosh q
+Seli- (9=
_ [2(1 = 2a?) _g]
0* 0

o a0 Sinh gﬂl
P
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Input - Foundation Velocity
a .
Xnot = xpe ? (msh q0 + P sinh q0)

Vou e at sinh ¢#
n q

_Su (I —e "osh g8 ae °®sinh ¢
w [} q0

[ 0

[_(5_ (1 —211’)]
2 0

+9 Sinh g()}
¢ qo

_ §%_, {_ll; _ (% + 3{_!)(1 —e 2 cosh 90)

“+

we Si1h 8
q

Upoy = Xy €

+uye " ((()sh qt —-3—’ sinh q0)

_ S, o o sinh ¢#

w q0
_Sh [l —e " osh ¢¥
w 0

_ (‘_; + E) a® _._q_'"‘:;' 0].

CASE V: -1 <a< 0

Use the equations for Case 11 but replace a by

-

CASE VI: a = 1

Input - Applied Force or
Foundation Acceleration

Yurt = ya(l — 0)e® + v,0e°

+%[l—(l—0)a"]

CASE VI (continued)

Sa 0,2 _.]
+k[l+e+0(l e®)

[— a- ‘)+%(l+2e')-e‘]

Unet &= —yuof. + v.(l + 0)e’

f_" ) (l_" 0)
+ Oe +I: ) + e

b.] l 4 _‘3_
t o |9 0*“"')_'.(1_0)]'

Input - Foundation Velocity

Xnet = Iu(l - 0)8' + u.0¢’

Unit = =xp06% + un(1l + 0)e® -—%‘ et
Shafioe (1Y)
w | t\s 2)' :

CASE VII: a < -1

Use the equations for Case 1V but replace a by
~-a.
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